Conic sections and intro to 3D and vectors

Answers included

Questions

Question 1. What does the equation $y^2 = 4$ describe in \mathbb{R}^2 ? What about \mathbb{R}^3 ?

Question 2. If $\mathbf{r} = \langle x, y \rangle$, $\mathbf{a} = \langle a_1, a_2 \rangle$, and $\mathbf{b} = \langle b_1, b_2 \rangle$ (where a_1, a_2, b_1, b_2 are constants), expand out the equation

$$(\mathbf{r} - \mathbf{a}) \cdot (\mathbf{r} - \mathbf{b}) = 0$$

and say what kind of shape it is.

Question 3. Can you express the magnitude (length) of a vector **v** in terms of the scalar (dot) product?

Question 4. Do the surfaces defined by the equations

$$x^2 + y^2 + (z - 1)^2 = 25$$

and

$$x^2 + y^2 + z^2 = 9$$

intersect?

Question 5. Suppose that
$$H_1$$
 and H_2 are two planes in \mathbb{R}^3 (3-dimensional space). Which of the following might be the intersection $H_1 \cap H_2$? There are multiple correct answers.

- (a) A plane.
- (b) A line.
- (c) A point.
- (d) Empty (the planes don't intersect).

Question 6. Identify the following shapes in \mathbb{R}^2 . Just a simple verbal description is fine.

(a) $4x^2 - 12x - 9y^2 - 6y + 7 = 0$ (b) $4x^2 - 12x - 9y^2 - 6y + 8 = 0$ (c) $4x^2 - 12x - 9y^2 - 6y + 9 = 0$

Question 7. Consider the line *L* with parametric equations

$$x = 3 + 3t$$
, $y = 2 - t$, $z = 5t$

and the point P(1, -2, 2). Find the point Q on the line L which minimizes the distance |PQ|, and say what this minimum distance is.

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to questions

Question 1. In \mathbb{R}^2 , a pair of lines. In \mathbb{R}^3 , a pair of planes. I drew pictures in class.

Question 2. The equation is

$$\langle x-a_1, y-a_2 \rangle \cdot \langle x-b_1, y-b_2 \rangle = 0$$

which we can expand as

$$x^{2} - (a_{1} + b_{1})x + a_{1}b_{1} + y^{2} - (a_{2} + b_{2})y + a_{2}b_{2} = 0.$$

After completing the square, you will find that this is a circle.

Question 3. $\|v\| = (v \cdot v)^{1/2}$.

Question 4. No. I demonstrated this both algebraically and geometrically. The first is a sphere of radius 5 centered at (0, 0, 1). The second is a sphere of radius 3 centered at (0, 0, 0). The latter sphere is completely contained inside the former; they do not touch.

Question 5. All of these are possible except for the case of a point. However this is difficult to show (the purpose of the exercise was just to have you practice visualizing 3D).

- (a) Yes, if the two planes completely coincide.
- (b) Yes, this is the most common situation in fact.
- (c) No, this is impossible.
- (d) Yes, if the two planes are parallel.

Question 6.

- (a) Hyperbola
- (b) Pair of intersecting lines
- (c) Hyperbola

Question 7. We will thoroughly revisit this question later.